Ocean-atmosphere-wave characterisation of a wind jet (Ebro shelf, nw mediterranean sea)

22Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterised by persistent and energetic offshore winds during autumn and winter. During these seasons, a seaward wind jet usually develops in a ~ 50 km wide band offshore. The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system was implemented in the region with a set of downscaling meshes to obtain high-resolution meteo-oceanographic outputs. Wind, waves and water currents were compared with in situ observations and remote-sensing-derived products with an acceptable level of agreement. Focused on an intense offshore wind event, the modelled wind jet appears in a limited area offshore with strong spatial variability. The wave pattern during the wind jet is characterised by the development of bimodal directional spectra, and the ocean circulation tends to present well-defined two-layer flow in the shallower region (i.e. inner shelf). The outer shelf tends to be dominated by mesoscale dynamics such as the slope current. Due to the limited fetch length, ocean surface roughness considering sea state (wave-atmosphere coupling) modifies to a small extent the wind and significant wave height under severe cross-shelf wind events. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power. © Author(s) 2016.

Cite

CITATION STYLE

APA

Grifoll, M., Navarro, J., Pallares, E., Ràfols, L., Espino, M., & Palomares, A. (2016). Ocean-atmosphere-wave characterisation of a wind jet (Ebro shelf, nw mediterranean sea). Nonlinear Processes in Geophysics, 23(3), 143–158. https://doi.org/10.5194/npg-23-143-2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free