Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

A series of in-situ transmission electron microscopy (TEM) observations during tensile deformation were conducted on the ion-irradiated stainless steel. The jerky motion of dislocations appeared, and dislocations were pinned and depinned at the defects through the in-situ TEM observation. The jump distance traveled by dislocation was measured and discussed as the mean interval of defects interacting with the dislocation motion. Microstructural information of irradiation defects such as obstacle interval was obtained by TEM and atom probe tomography (APT), and the type of pinning site was identified. It was found that Frank loops and black dots were irradiation defects that strongly interacted with dislocations. It was suggested that solute atom clusters act as weak obstacles for dislocations in the dynamic interaction behavior with dislocation motion.

Cite

CITATION STYLE

APA

Fukumoto, K. I., Umehara, K., & Yabuuchi, K. (2022). Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation. Metals, 12(5). https://doi.org/10.3390/met12050762

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free