Perovskite bimetallic oxides as electrode material blends can be an appropriate method to enhance the supercapacitor properties. In the present research, SrO 0.5:MnO 0.5 nanostructures (NS) were synthesized by a facile co-precipitation method and calcinated at 750–800°C. Crystal structure of SrO 0.5:MnO 0.5 NS were characterized by X-ray diffraction, surface chemical composition and chemical bond analysis, and dispersion of SrO into MnO was confirmed by X-ray photoelectron spectral studies. Structural morphology was analyzed from scanning electron microscopy. Optical properties of SrO 0.5:MnO 0.5 NS were studied using UV-Visible spectrophotometer and SrO 0.5 and MnO 0.5 NS showed ∼75 nm grain, ∼ 64 nm grain boundary distance, with two maxima at 261 nm and 345 nm as intensity of absorption patterns, respectively. The synthesized SrO 0.5:MnO 0.5 NS exhibited high specific capacitance of 392.8 F/g at a current density of 0.1 A/g. Electrochemical impedance spectroscopy results indicated low resistance and very low time constant of 0.2 s ∼73% of the capacitance was retained after 1000 galvanostatic charge-discharge (GCD) cycles. These findings indicate that SrO 0.5:MnO 0.5 bimetallic oxide material could be a promising electrode material for electrochemical energy storage systems.
CITATION STYLE
Adimule, V., Bhat, V. S., Yallur, B. C., Gowda, A. H. J., Padova, P. D., Hegde, G., & Toghan, A. (2022). Facile synthesis of novel SrO 0.5:MnO 0.5 bimetallic oxide nanostructure as a high-performance electrode material for supercapacitors. Nanomaterials and Nanotechnology, 12. https://doi.org/10.1177/18479804211064028
Mendeley helps you to discover research relevant for your work.