A unique porous material, namely, MXene/SiO2 hybrid aerogel, with a high surface area, was prepared via sol-gel and freeze-drying methods. The hierarchical porous hybrid aerogel possesses a three-dimensional integrated network structure of SiO2 cross-link with two-dimensional MXene; it is used not only as a scaffold to prepare sulfur-based cathode material, but also as an efficient functional separator to block the polysulfides shuttle. MXene/SiO2 hybrid aerogel as sulfur carrier exhibits good electrochemical performance, such as high discharge capacities (1007 mAh g–1 at 0.1 C) and stable cycling performance (823 mA h g–1 over 200 cycles at 0.5 C). Furthermore, the battery assembled with hybrid aerogel-modified separator remains at 623 mA h g–1 over 200 cycles at 0.5 C based on the conductive porous framework and abundant functional groups in hybrid aerogel. This work might provide further impetus to explore other applications of MXene-based composite aerogel.
CITATION STYLE
Zhou, J., Pei, Z., Sui, Z., Liang, Y., Xu, X., Li, Y., … Chen, Q. (2022). Hierarchical Porous and Three-Dimensional MXene/SiO2 Hybrid Aerogel through a Sol-Gel Approach for Lithium–Sulfur Batteries. Molecules, 27(20). https://doi.org/10.3390/molecules27207073
Mendeley helps you to discover research relevant for your work.