Abstrak— Songket merupakan warisan budaya Indonesia yang harus dijaga dan dilestarikan. Pelestarian songket dapat dilakukan dengan pendataan secara komputerisasi. Pendataan dapat dilakukan dengan pengenalan pola motif songket. Dalam pengenalan pola, ekstraksi fitur merupakan hal yang penting untuk mendapatkan informasi citra digital. Informasi dari hasil ekstraksi fitur digunakan dalam proses klasifikasi. Penelitian ini akan mengekstraksi fitur citra songket Aceh. Ekstraksi fitur tekstur menggunakan metode Gray Level Co-Occurrence Matrix (GLCM). Hasil ekstraksi fitur dapat digunakan untuk pendataan citra songket Aceh serta juga dapat digunakan untuk klasifikasi motif songket Aceh dengan menggunakan Jaringan Syaraf Tiruan (JST). Pengumpulan data pada penelitian ini melalui observasi dan wawancara. Implementasi metode yang diusulkan menggunakan Matlab R2009a. Pengujian menggunakan lima sampel citra songket Aceh. Hasil penelitian ini adalah nilai-nilai parameter dari metode GLCM meliputi fitur entropy, sum average, difference entropy dan autocorrelation. Diharapkan fitur-fitur ini dapat digunakan untuk proses klasifikasi citra songket Aceh.Kata kunci— Ekstraksi fitur, Gray Level Co-Occurrence Matrix (GLCM), Jaringan Syarat Tiruan (JST), Songket Aceh. Abstract - Songket is an Indonesian cultural heritage that must be preserved and preserved. The preservation of songket can be done by computerizing data collection. Data collection can be done by introducing songket motif patterns. In pattern recognition, feature extraction is important for obtaining digital image information. Information from the results of feature extraction is used in the classification process. This study will extract the features of the Aceh songket image. Texture feature extraction using the Gray Level Co-Occurrence Matrix (GLCM) method. Feature extraction results can be used for data collection of Aceh songket images and can also be used for the classification of Aceh songket motifs using Artificial Neural Networks (ANN). Data collection in this study through observation and interviews. The implementation of the proposed method uses Matlab R2009a. The test uses five samples of Aceh songket images. The results of this study are the parameter values of the GLCM method including entropy features, sum average, difference entropy and autocorrelation. It is expected that these features can be used for the process of classification of Aceh songket images.Keywords - Feature extraction, Gray Level Co-Occurrence Matrix (GLCM), Artificial Condition Network (ANN), Aceh SongketKeywords -
CITATION STYLE
Amalia, I. (2018). Ekstraksi Fitur Citra Songket Berdasarkan Tekstur Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM). Jurnal Infomedia, 3(2). https://doi.org/10.30811/jim.v3i2.715
Mendeley helps you to discover research relevant for your work.