CD8+ T cells are preprogrammed for cytotoxic differentiation in the thymus as they acquire expression of the transcription factor Runx3. However, a subset of effector CD8+ T cells (Tc17) produce IL-17 and fail to express cytotoxic genes. Here, we show that the transcription factors directing IL-17 production, STAT3 and RORγt, inhibit cytotoxicity despite persistent Runx3 expression. Cytotoxic gene repression did not require the transcription factor Thpok, which in CD4+ T cells restrains Runx3 functions and cytotoxicity; and STAT3 restrained cytotoxic gene expression in CD8+ T cells responding to viral infection in vivo. STAT3-induced RORγt represses cytotoxic genes by inhibiting the functions but not the expression of the “cytotoxic” transcription factors T-bet and Eomesodermin. Thus, the transcriptional circuitry directing IL-17 expression inhibits cytotoxic functions. However, by allowing expression of activators of the cytotoxic program, this inhibitory mechanism contributes to the instability of IL-17–producing T cells.
CITATION STYLE
Ciucci, T., Vacchio, M. S., & Bosselut, R. (2017). A STAT3-dependent transcriptional circuitry inhibits cytotoxic gene expression in T cells. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13236–13241. https://doi.org/10.1073/pnas.1711160114
Mendeley helps you to discover research relevant for your work.