Modeling user intrinsic characteristic on social media for identity linkage

4Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Most users on social media have intrinsic characteristics, such as interests and political views, that can be exploited to identify and track them. It raises privacy and identity issues in online communities. In this paper we investigate the problem of user identity linkage on two behavior datasets collected from different experiments. Specifically, we focus on user linkage based on users' interaction behaviors with respect to content topics. We propose an embedding method to model a topic as a vector in a latent space so as to interpret its deep semantics. Then a user is modeled as a vector based on his or her interactions with topics. The embedding representations of topics are learned by optimizing the joint-objective: the compatibility between topics with similar semantics, the discriminative abilities of topics to distinguish identities, and the consistency of the same user's characteristics from two datasets. The effectiveness of our method is verified on real-life datasets and the results show that it outperforms related methods.

Cite

CITATION STYLE

APA

Yu, X., Sun, Y., Li, X., & Bertino, E. (2018). Modeling user intrinsic characteristic on social media for identity linkage. In Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work (pp. 39–50). Association for Computing Machinery. https://doi.org/10.1145/3148330.3148340

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free