Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries

10Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

High energy density lithium metal batteries (LMBs) have garnered significant research interests in the past decades. However, the growth of lithium dendrites and the low Coulombic efficiency (CE) of Li metal anode pose significant challenges for the development of LMBs. Herein, we report a triethyl orthoformate (TEOF)-based localized high-concentration electrolyte (LHCE) that facilitates a highly reversible Li metal anode with dendrite-free deposition morphologies and an average Coulombic efficiency of 99.1% for 450 cycles. Mechanistic study reveal that the steric hindrance caused by the terminal ethyl groups in the TEOF solvent molecule results in a weak solvating ability, leading to the formation of anion-dominant solvation structures. The anion-dominant solvation sheaths play an essential role in the formation of a LiF-rich solid-electrolyte interphase (SEI), which effectively suppresses the growth of Li dendrites. Furthermore, the TEOF-based electrolyte demonstrates the stable cycling of high-voltage Li||NMC811 cells. These results provide insights into understanding of steric hindrance effect on electrolyte solvation structure and offer valuable guidance for the design of electrolyte solvents in the development of lithium metal batteries.

Cite

CITATION STYLE

APA

Li, X., Pan, Y., Liu, Y., Jie, Y., Chen, S., Wang, S., … Jiao, S. (2023). Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries. Carbon Neutrality, 2(1). https://doi.org/10.1007/s43979-023-00074-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free