Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell

  • SARIALTIN H
N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Perovskite solar cells (PSCs) have shown a significant increment in power conversion efficiency recently with advantages such as flexibility and low-cost roll-to-roll production. Prior to the commercialization of PSCs, it is significant to investigate its environmental performance with life cycle assessment method. In this work, cradle to gate LCA of solution-based organo-lead iodide perovskite solar cell performed according to the one reported literature method that comprises flexible Polyethylene terephthalate (PET) substrate and hole transport layer (HTL) elimination. Environmental impacts from the generation of 1 m2 of cell area production are determined in six International Reference Life Cycle Data System (ILCD) categories. It is found that the major impact comes from the fabrication of the aluminum metal electrode layer due to the high electrical energy required in the vacuum deposition process. The life cycle global warming potential (GWP) that the most widely used environmental indicator has been calculated for per kWh electricity production to make a comparison with commercial photovoltaic technologies. It is found that the HTL-free flexible (HFF) PSC needs 15-20 years of device lifetime to reach competitive GWP value with commercial PVs. Perovskite solar cells (PSCs) have shown a significant increment in power conversion efficiency recently with advantages such as flexibility and low-cost roll-to-roll production. Prior to the commercialization of PSCs, it is significant to investigate its environmental performance with life cycle assessment method. In this work, cradle to gate LCA of solution-based organo-lead iodide perovskite solar cell performed according to the one reported literature method that comprises flexible Polyethylene terephthalate (PET) substrate and hole transport layer (HTL) elimination. Environmental impacts from the generation of 1 m2 of cell area production are determined in six International Reference Life Cycle Data System (ILCD) categories. It is found that the major impact comes from the fabrication of the aluminum metal electrode layer due to the high electrical energy required in the vacuum deposition process. The life cycle global warming potential (GWP) that the most widely used environmental indicator has been calculated for per kWh electricity production to make a comparison with commercial photovoltaic technologies. It is found that the HTL-free flexible (HFF) PSC needs 15-20 years of device lifetime to reach competitive GWP value with commercial PVs.

Cite

CITATION STYLE

APA

SARIALTIN, H. (2022). Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell. Politeknik Dergisi, 25(2), 557–561. https://doi.org/10.2339/politeknik.774303

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free