Boron neutron capture therapy (BNCT) is a binary therapeutic method for cancer treatment based on the use of a combination of a cancer-specific drug containing boron-10 (10B) and thermal neutron irradiation. For successful BNCT,10B-containing molecules need to accumulate specifically in cancer cells, because destructive effect of the generated heavy particles is limited basically to boron-containing cells. Herein, we report on the design and synthesis of boron compounds that are functionalized with 9-, 12-, and 15-membered macrocyclic polyamines and their Zn2+complexes. Their cytotoxicity, intracellular uptake activity into cancer cells and normal cells, and BNCT effect are also reported. The experimental data suggest that mono- and/or diprotonated forms of metal-free [12]aneN4- and [15]aneN5-type ligands are uptaken into cancer cells, and their complexes with intracellular metals such as Zn2+would induce cell death upon thermal neutron irradiation, possibly via interactions with DNA.
CITATION STYLE
Ueda, H., Suzuki, M., Kuroda, R., Tanaka, T., & Aoki, S. (2021). Design, Synthesis, and Biological Evaluation of Boron-Containing Macrocyclic Polyamines and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. Journal of Medicinal Chemistry, 64(12), 8523–8544. https://doi.org/10.1021/acs.jmedchem.1c00445
Mendeley helps you to discover research relevant for your work.