Transcriptome differences between Cry1Ab resistant and susceptible strains of Asian corn borer

36Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is the major insect pest of maize in China and countries of East and Southeast Asia, the Pacific and Australasia. ACB can develop strong resistance to the transgenic Bt maize expressing Cry1Ab, the most widely commercialized Bt maize worldwide. However, the molecular basis for the resistance mechanisms of ACB to Cry1Ab remained unclear. Two biological replicates of the transcriptome of Bt susceptible (ACB-BtS) and Cry1Ab resistant (ACB-AbR) strains of ACB were sequenced using Solexa/Illumina RNA-Seq technology to identify Cry1Ab resistance-relevant genes. Results: The numbers of unigenes for two biological replications were 63,032 and 53,710 for ACB-BtS and 57,770 and 54,468 for ACB-AbR. There were 35,723 annotated unigenes from ACB reads found by BLAST searching NCBI non-redundant, NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology databases. Based on the NOISeq method, 3,793 unigenes were judged to be differentially expressed between ACB-BtS and ACB-AbR. Cry1Ab resistance appeared to be associated with change in the transcription level of enzymes involved in growth regulation, detoxification and metabolic/catabolic process. Among previously described Bt toxin receptors, the differentially expressed unigenes associated with aminopeptidase N and chymotrypsin/trypsin were up-regulated in ACB-AbR. Whereas, other putative Cry receptors, cadherin-like protein, alkaline phosphatase, glycolipid, actin, V-type proton ATPase vatalytic, heat shock protein, were under-transcripted. Finally, GPI-anchor biosynthesis was found to be involved in the significantly enriched pathway, and all genes mapped to the pathway were substantially down-regulated in ACB-AbR. Conclusion: To our knowledge, this is the first comparative transcriptome study to discover candidate genes involved in ACB Bt resistance. This study identified differentially expressed unigenes related to general Bt resistance in ACB. The assembled, annotated transcriptomes provides a valuable genomic resource for further understanding of the molecular basis of ACB Bt resistance mechanisms.

Cite

CITATION STYLE

APA

Xu, L. N., Wang, Y. Q., Wang, Z. Y., Hu, B. J., Ling, Y. H., & He, K. L. (2015). Transcriptome differences between Cry1Ab resistant and susceptible strains of Asian corn borer. BMC Genomics, 16(1). https://doi.org/10.1186/s12864-015-1362-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free