T cell exhaustion is a well-known mechanism involved in escape of degenerated cells or certain pathogens from CD8+ T cell-mediated immune surveillance, ultimately resulting in tumor development and chronic infections, respectively. Next to activated T cells, exhausted CD8+ T cells typically express high levels of the programmed cell death-1 (PD-1) receptor. While interaction of PD-1 with its ligand programmed death-ligand 1 (PD-L1) on hemotopoietic and non-hemotopoietic cells is important for the re-establishment of homeostasis following immune activation, PD-1/PD-L1 interaction represents a major drawback in certain other disease settings such as cancer or chronic viral infections. Here PD-1 signalling in T cells prevents efficient anti-tumor or anti-viral immune responses. Thus, therapeutic interference with the PD-1/PD-L1 pathway represents a promising approach for releasing exhausted CD8+ T cells from PD-1-dependent suppression and reactivation of effector functions. However, recent reports have highlighted unexpected outcomes of PD-1/PD-L1 pathway inhibition in the context of chronic infections. We provide here a comprehensive overview of the recent discoveries made in the context of PD-1/PD-L1 checkpoint inhibition that are considered relevant with respect to the targeted reactivation of effector functions in exhausted CD8+ T cells. We briefly discuss the impact of PD-1 signalling on the expression of certain transcription factors, on epigenetic modifications affecting chromatin accessibility, on cellular metabolism and the expression of certain cytokine receptors involved in immune homeostasis. These newly uncovered facts should be carefully considered before further development of therapies targeting the PD-1/PD-L1 pathway that are aiming at the restoration of pathogen-specific and anti-tumor CD8+ T cell effector functions in order to prevent adverse side effects.
CITATION STYLE
Veluswamy, P., & Bruder, D. (2018). PD-1/PD-L1 pathway inhibition to restore effector functions in exhausted CD8+ T cells: Chances, limitations and potential risks. Translational Cancer Research, 7, S530–S537. https://doi.org/10.21037/tcr.2018.04.04
Mendeley helps you to discover research relevant for your work.