The chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) are "orphan" members of the nuclear hormone receptor (NR) superfamily. COUP-TFs are involved in organogenesis and neurogenesis. However, their role in skeletal muscle (and other major mass tissues) and metabolism remains obscure. Skeletal muscle accounts for ∼40% of total body mass and energy expenditure. Moreover, this peripheral tissue is a primary site of glucose and fatty acid utilization. We utilize small interfering RNA (siRNA)-mediated attenuation of Coup-TfI and II (mRNA and protein) in a skeletal muscle cell culture model to understand the regulatory role of Coup-Tfs in this energy demanding tissue. This targeted NR repression resulted in the significant attenuation of genes that regulate lipid mobilization and utilization (including Pparα, Fabp3, and Cpt-1). This was coupled to reduced fatty acid β-oxidation. Additionally we observed significant attenuation of Ucp1, a gene involved in energy expenditure. Concordantly, we observed a 5-fold increase in ATP levels in cells with siRNA-mediated repression of Coup-TfI and II. Furthermore, the expression of "classical" liver X receptor (LXR) target genes involved in reverse cholesterol transport (Abca1 and Abcg1) were both significantly repressed. Moreover, we observed that repression of the Coup-Tfs ablated the activation of Abca1, and Abcg1 mRNA expression by the selective LXR agonist, T0901317. In concordance, Coup-Tf-siRNA-transfected cells were refractory to Lxr-mediated reduction of total intracellular cholesterol levels in contrast to the negative control cells. In agreement Lxr-mediated activation of the Abca1 promoter in Coup-Tf-siRNA cells was attenuated. Collectively, these data suggest a pivotal role for Coup-Tfs in the regulation of lipid utilization/cholesterol homeostasis in skeletal muscle cells and the modulation of Lxr-dependent gene regulation. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Myers, S. A., Wang, S. C. M., & Muscat, G. E. O. (2006). The chicken ovalbumin upstream promoter-transcription factors modulate genes and pathways involved in skeletal muscle cell metabolism. Journal of Biological Chemistry, 281(34), 24149–24160. https://doi.org/10.1074/jbc.M601941200
Mendeley helps you to discover research relevant for your work.