Machine learning for prediction of energy in wheat production

25Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

Abstract

The global population growth has led to a considerable rise in demand for wheat. Today, the amount of energy consumption in agriculture has also increased due to the need for sufficient food for the growing population. Thus, agricultural policymakers in most countries rely on prediction models to influence food security policies. This research aims to predict and reduce the amount of energy consumption in wheat production. Data were collected from the farms of Estahban city in Fars province of Iran by the Jihad Agricultural Department’s experts for 20 years from 1994 to 2013. In this study, a novel prediction method based on consumed energy in the production period is proposed. The model is developed based on artificial intelligence to forecast the output energy in wheat production and uses extreme learning machine (ELM) and support vector regression (SVR). In the experimental stage, the value of elevation metrics for the EVM and ELM was reported to be equal to 0.000000409 and 0.9531, respectively. Total input energy (consumed) is found to be 1,460,503.1 Mega Joules (MJ), and output energy (produced wheat) is 1,401,011.945 MJ for the Estahban. The result indicates the superiority of the ELM model to enhance the decisions of the agricultural policymakers.

References Powered by Scopus

9311Citations
6484Readers
Get full text

Extreme learning machine for regression and multiclass classification

5316Citations
1535Readers
Get full text

OP-ELM: Optimally pruned extreme learning machine

731Citations
244Readers
Get full text

Cited by Powered by Scopus

Get full text

This article is free to access.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Mostafaeipour, A., Fakhrzad, M. B., Gharaat, S., Jahangiri, M., Dhanraj, J. A., Band, S. S., … Mosavi, A. (2020). Machine learning for prediction of energy in wheat production. Agriculture (Switzerland), 10(11), 1–18. https://doi.org/10.3390/agriculture10110517

Readers over time

‘20‘21‘22‘23‘24‘2508162432

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 17

44%

Professor / Associate Prof. 12

31%

Lecturer / Post doc 6

15%

Researcher 4

10%

Readers' Discipline

Tooltip

Engineering 11

41%

Computer Science 9

33%

Agricultural and Biological Sciences 4

15%

Energy 3

11%

Save time finding and organizing research with Mendeley

Sign up for free
0