Strategy for Deriving Sacramento Model Parameters Using Soil Properties to Improve Its Runoff Simulation Performances

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Physically-based parameter estimations are essential to improve the simulation performance of a hydrologic model and to produce physically reasonable parameters with spatial consistency. This study proposed a parameter derivation strategy to improve the Sacramento Soil Moisture Accounting (SAC-SMA) model simulation performance based on the publicly accessible Harmonized World Soil Database (HWSD). The HWSD soil properties were used to estimate the soil moisture characteristics, and the HWSD soil texture classifications and International Geosphere-Biosphere Programme (IGBP) land cover types were used to identify the Soil Conservation Service (SCS) runoff curve number (CN). After the soil moisture characteristics and CNs were identified, the major parameters of the SAC-SMA model were derived. The simulation results were evaluated using the Nash efficiency coefficient (NSEC), and Free Search (FS) algorithm was used to further adjust and calibrate the parameters. Compared with the simulation accuracy (NSEC = 0.66~0.88) and parameter transferability (NSEC = 0.22~0.83) obtained for the SAC-SMA model using directly calibrated parameters, the HWSD data-derived parameters allowed the SAC-SMA model to achieve a similar simulation accuracy (NSEC = 0.65~0.86) and a better transferability (NSEC = 0.61~0.85).

Cite

CITATION STYLE

APA

Wang, B., Sun, H., Guo, S., Huang, J., Wang, Z., Bai, X., … Jin, X. (2023). Strategy for Deriving Sacramento Model Parameters Using Soil Properties to Improve Its Runoff Simulation Performances. Agronomy, 13(6). https://doi.org/10.3390/agronomy13061473

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free