SUMMARY: Today's graphics processing units (GPUs) compose the scene from individual triangles. As about 320 triangles are needed to approximate a single sphere-an atom-in a convincing way, visualizing larger proteins with atomic details requires tens of millions of triangles, far too many for smooth interactive frame rates. We describe a new approach to solve this 'molecular graphics problem', which shares the work between GPU and multiple CPU cores, generates high-quality results with perfectly round spheres, shadows and ambient lighting and requires only OpenGL 1.0 functionality, without any pixel shader Z-buffer access (a feature which is missing in most mobile devices). AVAILABILITY AND IMPLEMENTATION: YASARA View, a molecular modeling program built around the visualization algorithm described here, is freely available (including commercial use) for Linux, MacOS, Windows and Android (Intel) from www.YASARA.org. CONTACT: elmar@yasara.org SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
CITATION STYLE
Krieger, E., & Vriend, G. (2014). YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics (Oxford, England), 30(20), 2981–2982. https://doi.org/10.1093/bioinformatics/btu426
Mendeley helps you to discover research relevant for your work.