Targeted expression of a protease-resistant IGFBP-4 mutant in smooth muscle of transgenic mice results in IGFBP-4 stabilization and smooth muscle hypotrophy

49Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The insulin-like growth factor-binding protein 4 (IGFBP-4), the most abundant IGF-binding protein produced by rodent smooth muscle cells (SMC), is degraded by specific protease(s) potentially releasing IGF-I for local bioactivity. IGFBP-4 protease(s) recognizes basic residues within the midregion of the molecule. We constructed a mutant IGFBP-4 with the cleavage domain substitution 119-KHMAKVRDRSKMK-133 to 119-AAMAAVADASAMA-133. Myc-tagged native and IGFBP-4.7A retained equivalent IGF-I binding affinity. Whereas native IGFBP-4 was cleaved by SMC-conditioned medium, IGFBP-4.7A was completely resistant to proteolysis. To explore the function of the protease-resistant IGFBP-4 in vivo, expression of the mutant and native proteins was targeted to SMC of transgenic mice by means of a smooth muscle α-actin promoter. Transgene expression was confined to SMC-rich tissues in all lines. Bladder and aortic immunoreactive IGFBP-4/transgene mRNA ratios in SMP8-BP4.7A mice were increased by 2- to 4-fold relative to SMP8-BP4 mice, indicating that the IGFBP-4.7A protein was stabilized in vivo. SMPS-BP4.7A mice had lower aortic, bladder, and stomach weight and intestinal length relative to SMP8-BP4 counterparts matched for protein expression by Western blotting. Thus, IGFBP-4.7A results in greater growth inhibition than equivalent levels of native IGFBP-4 in vivo, demonstrating a role for IGFBP-4 proteolysis in the regulation of IGF-I action.

Cite

CITATION STYLE

APA

Zhang, M., Smith, E. P., Kuroda, H., Banach, W., Chernausek, S. D., & Fagin, J. A. (2002). Targeted expression of a protease-resistant IGFBP-4 mutant in smooth muscle of transgenic mice results in IGFBP-4 stabilization and smooth muscle hypotrophy. Journal of Biological Chemistry, 277(24), 21285–21290. https://doi.org/10.1074/jbc.M112082200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free