Unified Bayesian estimator of EEG reference at infinity: rREST (Regularized reference electrode standardization technique)

19Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

The choice of reference for the electroencephalogram (EEG) is a long-lasting unsolved issue resulting in inconsistent usages and endless debates. Currently, both the average reference (AR) and the reference electrode standardization technique (REST) are two primary, apparently irreconcilable contenders. We propose a theoretical framework to resolve this reference issue by formulating both (a) estimation of potentials at infinity, and (b) determination of the reference, as a unified Bayesian linear inverse problem, which can be solved by maximum a posterior estimation. We find that AR and REST are very particular cases of this unified framework: AR results from biophysically non-informative prior; while REST utilizes the prior based on the EEG generative model. To allow for simultaneous denoising and reference estimation, we develop the regularized versions of AR and REST, named rAR and rREST, respectively. Both depend on a regularization parameter that is the noise to signal variance ratio. Traditional and new estimators are evaluated with this framework, by both simulations and analysis of real resting EEGs. Toward this end, we leverage the MRI and EEG data from 89 subjects which participated in the Cuban Human Brain Mapping Project. Generated artificial EEGs-with a known ground truth, show that relative error in estimating the EEG potentials at infinity is lowest for rREST. It also reveals that realistic volume conductor models improve the performances of REST and rREST. Importantly, for practical applications, it is shown that an average lead field gives the results comparable to the individual lead field. Finally, it is shown that the selection of the regularization parameter with Generalized Cross-Validation (GCV) is close to the "oracle" choice based on the ground truth. When evaluated with the real 89 resting state EEGs, rREST consistently yields the lowest GCV. This study provides a novel perspective to the EEG reference problem by means of a unified inverse solution framework. It may allow additional principled theoretical formulations and numerical evaluation of performance.

References Powered by Scopus

Ridge Regression: Biased Estimation for Nonorthogonal Problems

8085Citations
N/AReaders
Get full text

Robust Statistics: Second Edition

1882Citations
N/AReaders
Get full text

EEG source imaging

1416Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Which Reference Should We Use for EEG and ERP practice?

110Citations
N/AReaders
Get full text

MMSFL-OWFB: A novel class of orthogonal wavelet filters for epileptic seizure detection

94Citations
N/AReaders
Get full text

A large scale screening study with a SMR-based BCI: Categorization of BCI users and differences in their SMR activity

67Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Hu, S., Yao, D., & Valdes-Sosa, P. A. (2018). Unified Bayesian estimator of EEG reference at infinity: rREST (Regularized reference electrode standardization technique). Frontiers in Neuroscience, 12(MAY). https://doi.org/10.3389/fnins.2018.00297

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 11

55%

Professor / Associate Prof. 4

20%

Researcher 4

20%

Lecturer / Post doc 1

5%

Readers' Discipline

Tooltip

Neuroscience 9

53%

Engineering 3

18%

Agricultural and Biological Sciences 3

18%

Medicine and Dentistry 2

12%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 32

Save time finding and organizing research with Mendeley

Sign up for free