Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes

64Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Affinity purification in combination with isotope labeling of proteins has proven to be a powerful method to discriminate specific from nonspecific interactors. However, in the standard SILAC (stable isotope labeling by amino acids in cell culture) approach dynamic components may easily be assigned as nonspecific. We compared two affinity purification protocols, which in combination revealed information on the dynamics of protein complexes. We focused on the central component in eukaryotic transcription, the human TATA-binding protein, which is involved in different complexes. All known TATA-binding protein-associated factors (TAFs) were detected as specific interactors. Interestingly one of them, BTAF1, exchanged significantly in cell extracts during the affinity purification. The other TAFs did not display this behavior. Cell cycle synchronization showed that BTAF1 exchange was regulated during mitosis. The combination of the two affinity purification protocols allows a quantitative approach to identify transient components in any protein complex. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Mousson, F., Kolkman, A., Pijnappel, W. W. M. P., Timmers, H. T. M., & Heck, A. J. R. (2008). Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Molecular and Cellular Proteomics, 7(5), 845–852. https://doi.org/10.1074/mcp.M700306-MCP200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free