BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL

4Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

We propose a hybrid model of differential privacy that considers a combination of regular and opt-in users who desire the differential privacy guarantees of the local privacy model and the trusted curator model, respectively. We demonstrate that within this model, it is possible to design a new type of blended algorithm that improves the utility of obtained data, while providing users with their desired privacy guarantees. We apply this algorithm to the task of privately computing the head of the search log and show that the blended approach provides significant improvements in the utility of the data compared to related work. Specifically, on two large search click datasets, comprising 1.75 and 16 GB, respectively, our approach attains NDCG values exceeding 95% across a range of privacy budget values.

Cite

CITATION STYLE

APA

Avent, B., Korolova, A., Zeber, D., Hovden, T., & Livshits, B. (2019). BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL. Journal of Privacy and Confidentiality, 9(2). https://doi.org/10.29012/jpc.680

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free