Levels of autonomy in synthetic biology engineering

  • Beal J
  • Rogers M
11Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Engineering biological organisms is a complex, challenging, and often slow process. Other engineering domains have addressed such challenges with a combination of standardization and automation, enabling a divide‐and‐conquer approach to complexity and greatly increasing productivity. For example, standardization and automation allow rapid and predictable translation of prototypes into fielded applications (e.g., "design for manufacturability"), simplify sharing and reuse of work between groups, and enable reliable outsourcing and integration of specialized subsystems. Although this approach has also been part of the vision of synthetic biology, almost since its very inception (Knight & Sussman, 1998), this vision still remains largely unrealized (Carbonell et al, 2019). Despite significant progress over the last two decades, which have for example allowed obtaining and editing DNA sequences in easier and cheaper ways, the full process of organism engineering is still typically rather slow, manual, and artisanal. [ABSTRACT FROM AUTHOR]

Cite

CITATION STYLE

APA

Beal, J., & Rogers, M. (2020). Levels of autonomy in synthetic biology engineering. Molecular Systems Biology, 16(12). https://doi.org/10.15252/msb.202010019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free