Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles

40Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the frame of this work, the aim was to create a superparamagnetic nanocomposite system with a maximized magnetic moment when magnetized by an external field and a blocking temperature far below room temperature. For this purpose, iron oxide nanoparticles of 3.8-, 5- and 8-nm size have been infiltrated into the pores of porous silicon. To fabricate tailored magnetic properties of the system, the particle size and the magnetic interactions among the particles play a crucial role. Different concentrations of the particles dispersed in hexane have been used for the infiltration to vary the blocking temperature TB, which indicates the transition between the superparamagnetic behavior and blocked state. TB is not only dependent on the particle size but also on the magnetic interactions between them, which can be varied by the particle-particle distance. Thus, a modification of the pore loading on the one hand and of the porous silicon morphology on the other hand results in a composite material with a desired blocking temperature. Because both materials, the mesoporous silicon matrices as well as the Fe3O4 nanoparticles, offer low toxicity, the system is a promising candidate for biomedical applications. © 2012 Rumpf et al.

Cite

CITATION STYLE

APA

Rumpf, K., Granitzer, P., Morales, P. M., Poelt, P., & Reissner, M. (2012). Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles. Nanoscale Research Letters, 7. https://doi.org/10.1186/1556-276X-7-445

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free