The use of nudging in the Weather Research and Forecasting (WRF) Model to constrain regional climate downscaling simulations is gaining in popularity because it can reduce error and improve consistency with the driving data. While some attention has been paid to whether nudging is beneficial for downscaling, very little research has been performed to determine best practices. In fact, many published papers use the default nudging configuration (which was designed for numerical weather prediction), follow practices used by colleagues, or adapt methods developed for other regional climate models. Here, a suite of 45 three-year simulations is conducted with WRF over the continental United States to systematically and comprehensively examine a variety of nudging strategies. The simulations here use a longer test period than did previously published works to better evaluate the robustness of each strategy through all four seasons, through multiple years, and across nine regions of the United States. The analysis focuses on the evaluation of 2-m temperature and precipitation, which are two of the most commonly required downscaled output fields for air quality, health, and ecosystems applications. Several specific recommendations are provided to effectively use nudging in WRF for regional climate applications. In particular, spectral nudging is preferred over analysis nudging. Spectral nudging performs best in WRF when it is used toward wind above the planetary boundary layer (through the stratosphere) and temperature and moisture only within the free troposphere. Furthermore, the nudging toward moisture is very sensitive to the nudging coefficient, and the default nudging coefficient in WRF is too high to be used effectively for moisture.
CITATION STYLE
Spero, T. L., Nolte, C. G., Mallard, M. S., & Bowden, J. H. (2018). A maieutic exploration of nudging strategies for regional climate applications using the WRF Model. Journal of Applied Meteorology and Climatology, 57(8), 1883–1906. https://doi.org/10.1175/JAMC-D-17-0360.1
Mendeley helps you to discover research relevant for your work.