Sphingolipid-Induced Programmed Cell Death is a Salicylic Acid and EDS1-Dependent Phenotype in Arabidopsis Fatty Acid Hydroxylase (Fah1, Fah2) and Ceramide Synthase (Loh2) Triple Mutants

11Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ceramides (Cers) and long-chain bases (LCBs) are plant sphingolipids involved in the induction of plant programmed cell death (PCD). The fatty acid hydroxylase mutant fah1 fah2 exhibits high Cer levels and moderately elevated LCB levels. Salicylic acid glucoside level is increased in this mutant, but no cell death can be detected by trypan blue staining. To determine the effect of Cers with different chain lengths, fah1 fah2 was crossed with ceramide synthase mutants longevity assurance gene one homologue1-3 (loh1, loh2 and loh3). Surprisingly, only triple mutants with loh2 show cell death detected by trypan blue staining under the selected conditions. Sphingolipid profiling revealed that the greatest differences between the triple mutant plants are in the LCB and LCB-phosphate (LCB-P) fraction. fah1 fah2 loh2 plants accumulate LCB d18:0, LCB t18:0 and LCB-P d18:0. Crossing fah1 fah2 loh2 with the salicylic acid (SA) synthesis mutant sid2-2 and with the SA signaling mutants enhanced disease susceptibility 1-2 (eds1-2) and phytoalexin deficient 4-1 (pad4-1) revealed that lesions are SA- and EDS1-dependent. These quadruple mutants also confirm that there may be a feedback loop between SA and sphingolipid metabolism as they accumulated less Cers and LCBs. In conclusion, PCD in fah1 fah2 loh2 is a SA- and EDS1-dependent phenotype, which is likely due to accumulation of LCBs.

Cite

CITATION STYLE

APA

König, S., Gömann, J., Zienkiewicz, A., Zienkiewicz, K., Meldau, D., Herrfurth, C., & Feussner, I. (2022). Sphingolipid-Induced Programmed Cell Death is a Salicylic Acid and EDS1-Dependent Phenotype in Arabidopsis Fatty Acid Hydroxylase (Fah1, Fah2) and Ceramide Synthase (Loh2) Triple Mutants. Plant and Cell Physiology, 63(3), 317–325. https://doi.org/10.1093/pcp/pcab174

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free