Comparative genomics reveals multiple pathways to mutualism for tick-borne pathogens

10Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Multiple important human and livestock pathogens employ ticks as their primary host vectors. It is not currently known whether this means of infecting a host arose once or many times during evolution. Results: In order to address this question, we conducted a comparative genomics analysis on a set of bacterial pathogens from seven genera - Borrelia, Rickettsia, Anaplasma, Ehrlichia, Francisella, Coxiella, and Bartonella, including species from three different host vectors - ticks, lice, and fleas. The final set of 102 genomes used in the study encoded a total of 120,046 protein sequences. We found that no genes or metabolic pathways were present in all tick-borne bacteria. However, we found some genes and pathways were present in subsets of tick-transmitted organisms while absent from bacteria transmitted by lice or fleas. Conclusion: Our analysis suggests that the ability of pathogens to be transmitted by ticks arose multiple times over the course of evolution. To our knowledge, this is the most comprehensive study of tick transmissibility to date.

Cite

CITATION STYLE

APA

Lockwood, S., Brayton, K. A., & Broschat, S. L. (2016). Comparative genomics reveals multiple pathways to mutualism for tick-borne pathogens. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2744-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free