Currently, multilevel inverter (MLI) has been chosen over conventional inverter because of less harmonic distortions and higher output voltage levels. In this paper, 15-level inverter with reduced number of power switching devices is designed. Different output voltage levels can be obtained including zero-level or with none zero-level (NoneZero-level). Single-phase MLI inverter with 7-switches is built, simulated, and implemented practically. The system depending on modified absolute sinusoidal pulse width modulation (MASPWM) controller strategy is adopted. Simulation results clarified that MLI with NoneZero-level provides output voltage with total harmonic distortion (THD) percent less than with zero-level. The THD of the 15-level output voltage with zero-level is 3.39%, while with NoneZero-level is 3%, respectively. The system is tested at different output levels. The THD values at different output voltage levels is reduced by 12% depending on NoneZero-level state. Depending on what has been achieved, the system has been implemented practically with NoneZero-level and the THD value was 3.1%. These results prove the success of the suggested MLI circuit and MASPWM controller to obtain the required voltage level and THD.
CITATION STYLE
Antar, R. K., Hussein, T. A., & Abdullah, A. M. (2022). Design and implementation of reduced number of switches for new multilevel inverter topology without zero-level state. International Journal of Power Electronics and Drive Systems, 13(1), 401–410. https://doi.org/10.11591/ijpeds.v13.i1.pp401-410
Mendeley helps you to discover research relevant for your work.