Unbiased estimation of the gradient of the log-likelihood in inverse problems

12Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We consider the problem of estimating a parameter θ∈Θ⊆Rdθ associated with a Bayesian inverse problem. Typically one must resort to a numerical approximation of gradient of the log-likelihood and also adopt a discretization of the problem in space and/or time. We develop a new methodology to unbiasedly estimate the gradient of the log-likelihood with respect to the unknown parameter, i.e. the expectation of the estimate has no discretization bias. Such a property is not only useful for estimation in terms of the original stochastic model of interest, but can be used in stochastic gradient algorithms which benefit from unbiased estimates. Under appropriate assumptions, we prove that our estimator is not only unbiased but of finite variance. In addition, when implemented on a single processor, we show that the cost to achieve a given level of error is comparable to multilevel Monte Carlo methods, both practically and theoretically. However, the new algorithm is highly amenable to parallel computation.

Cite

CITATION STYLE

APA

Jasra, A., Law, K. J. H., & Lu, D. (2021). Unbiased estimation of the gradient of the log-likelihood in inverse problems. Statistics and Computing, 31(3). https://doi.org/10.1007/s11222-021-09994-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free