CRISPR/Cas9-engineered Gad1 elimination in rats leads to complex behavioral changes: implications for schizophrenia

19Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

GABAergic dysfunctions have been implicated in the pathogenesis of schizophrenia, especially the associated cognitive impairments. The GABA synthetic enzyme glutamate decarboxylase 67-kDa isoform (GAD67) encoded by the GAD1 gene is downregulated in the brains of patients with schizophrenia. Furthermore, a patient with schizophrenia harboring a homozygous mutation of GAD1 has recently been discovered. However, it remains unclear whether loss of function of GAD1 leads to the symptoms observed in schizophrenia, including cognitive impairment. One of the obstacles faced in experimental studies to address this issue is the perinatal lethality of Gad1 knockout (KO) mice, which precluded characterization at the adult stage. In the present study, we successfully generated Gad1 KO rats using CRISPR/Cas9 genome editing technology. Surprisingly, 33% of Gad1 KO rats survived to adulthood and could be subjected to further characterization. The GABA concentration in the Gad1 KO cerebrum was reduced to ~52% of the level in wild-type rats. Gad1 KO rats exhibited impairments in both spatial reference and working memory without affecting adult neurogenesis in the hippocampus. In addition, Gad1 KO rats showed a wide range of behavioral alterations, such as enhanced sensitivity to an NMDA receptor antagonist, hypoactivity in a novel environment, and decreased preference for social novelty. Taken together, the results suggest that Gad1 KO rats could provide a novel model covering not only cognitive deficits but also other aspects of the disorder. Furthermore, the present study teaches an important lesson: differences between species should be considered when developing animal models of human diseases.

Cite

CITATION STYLE

APA

Fujihara, K., Yamada, K., Ichitani, Y., Kakizaki, T., Jiang, W., Miyata, S., … Yanagawa, Y. (2020). CRISPR/Cas9-engineered Gad1 elimination in rats leads to complex behavioral changes: implications for schizophrenia. Translational Psychiatry, 10(1). https://doi.org/10.1038/s41398-020-01108-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free