With the rapid evolution of the Internet and the exponential proliferation of information, users encounter information overload and the conundrum of choice. Personalized recommendation systems play a pivotal role in alleviating this burden by aiding users in filtering and selecting information tailored to their preferences and requirements. This paper undertakes a comparative analysis between the operational mechanisms of traditional e-commerce commodity classification systems and personalized recommendation systems. It delineates the significance and application of personalized recommendation systems across e-commerce, content information, and media domains. Furthermore, it delves into the challenges confronting personalized recommendation systems in e-commerce, including data privacy, algorithmic bias, scalability, and the cold start problem. Strategies to address these challenges are elucidated. Subsequently, the paper outlines a personalized recommendation system leveraging the BERT model and nearest neighbor algorithm, specifically tailored to address the exigencies of the eBay e-commerce platform. The efficacy of this recommendation system is substantiated through manual evaluation, and a practical application operational guide and structured output recommendation results are furnished to ensure the system's operability and scalability.
CITATION STYLE
Xu, K., Zhou, H., Zheng, H., Zhu, M., & Xin, Q. (2024). Intelligent classification and personalized recommendation of E-commerce products based on machine learning. Applied and Computational Engineering, 64(1), 148–154. https://doi.org/10.54254/2755-2721/64/20241365
Mendeley helps you to discover research relevant for your work.