Evaluation of acrylamide-based molecularly imprinted polymer thin-sheets for specific protein capture - A myoglobin model

15Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We evaluate a series of thin-sheet hydrogel molecularly imprinted polymers (MIPs), using a family of acrylamide-based monomers, selective for the target protein myoglobin (Mb). The simple production of the thin-sheet MIP offers an alternative biorecognition surface that is robust, stable and uniform, and has the potential to be adapted for biosensor applications. The MIP containing the functional monomer N-hydroxymethylacrylamide (NHMAm), produced optimal specific rebinding of the target protein (Mb) with 84.9% (± 0.7) rebinding and imprinting and selectivity factors of 1.41 and 1.55, respectively. The least optimal performing MIP contained the functional monomer N,N-dimethylacrylamide (DMAm) with 67.5% (± 0.7) rebinding and imprinting and selectivity factors of 1.11 and 1.32, respectively. Hydrogen bonding effects, within a protein-MIP complex, were investigated using computational methods and Fourier transform infrared (FTIR) spectroscopy. The quantum mechanical calculations predictions of a red shift of the monomer carbonyl peak is borne-out within FTIR spectra, with three of the MIPs, acrylamide, N-(hydroxymethyl) acrylamide, and N-(hydroxyethyl) acrylamide, showing peak downshifts of 4, 11, and 8 cm-1, respectively.

Cite

CITATION STYLE

APA

Sullivan, M. V., Dennison, S. R., Hayes, J. M., & Reddy, S. M. (2021). Evaluation of acrylamide-based molecularly imprinted polymer thin-sheets for specific protein capture - A myoglobin model. Biomedical Physics and Engineering Express, 7(4). https://doi.org/10.1088/2057-1976/ac0991

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free