We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at T=0 may become unstable at T≠0, as a consequence of a divergent behavior in the spin susceptibility. We test this prediction by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Roy, A., Ota, M., Recati, A., & Dalfovo, F. (2021). Finite-temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture. Physical Review Research, 3(1). https://doi.org/10.1103/PhysRevResearch.3.013161