Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: Differences in molecular structure and physiological function

83Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Signal transduction by a traditional two-component system involves a sensor protein that recognizes a physiological signal, autophosphorylates and transfers its phosphate, and a response regulator protein that receives the phosphate, alters its affinity toward specific target proteins or DNA sequences and causes change in metabolic activity or gene expression. In some cases the sensor protein, when unphosphorylated, has a positive effect upon the rate of dephosphorylation of the regulator protein (bifunctional sensor), whereas in other cases it has no such effect (monofunctional sensor). In this work we identify structural and functional differences between these two designs. In the first part of the paper we use sequence data for two-component systems from several organisms and homology modelling techniques to determine structural features for response regulators and for sensors. Our results indicate that each type of reference sensor (bifunctional and monofunctional) has a distinctive structural feature, which we use to make predictions regarding the functionality of other sensors. In the second part of the paper we use mathematical models to analyse and compare the physiological function of systems that differ in the type of sensor and are otherwise equivalent. Our results show that a bifunctional sensor is better than a monofunctional sensor both at amplifying changes in the phosphorylation level of the regulator caused by signals from the sensor and at attenuating changes caused by signals from small phosphodonors. Cross-talk to or from other two-component systems is better suppressed if the transmitting sensor is monofunctional, which is the more appropriate design when such cross-talk represents pathological noise. Cross-talk to or from other two-component systems is better amplified if the transmitting sensor is bifunctional, which is the more appropriate design when such cross-talk represents a physiological signal. These results provide a functional rationale for the selection of each design that is consistent with available experimental evidence for several two-component systems.

Cite

CITATION STYLE

APA

Alves, R., & Savageau, M. A. (2003). Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: Differences in molecular structure and physiological function. Molecular Microbiology, 48(1), 25–51. https://doi.org/10.1046/j.1365-2958.2003.03344.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free