Observation of entanglement-dependent two-particle holonomic phase

18Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Holonomic phases - geometric and topological - have long been an intriguing aspect of physics. They are ubiquitous, ranging from observations in particle physics to applications in fault tolerant quantum computing. However, their exploration in particles sharing genuine quantum correlations lacks in observations. Here, we experimentally demonstrate the holonomic phase of two entangled photons evolving locally, which, nevertheless, gives rise to an entanglement-dependent phase. We observe its transition from geometric to topological as the entanglement between the particles is tuned from zero to maximal, and find this phase to behave more resiliently to evolution changes with increasing entanglement. Furthermore, we theoretically show that holonomic phases can directly quantify the amount of quantum correlations between the two particles. Our results open up a new avenue for observations of holonomic phenomena in multiparticle entangled quantum systems. © 2014 American Physical Society.

Cite

CITATION STYLE

APA

Loredo, J. C., Broome, M. A., Smith, D. H., & White, A. G. (2014). Observation of entanglement-dependent two-particle holonomic phase. Physical Review Letters, 112(14). https://doi.org/10.1103/PhysRevLett.112.143603

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free