Background: We have previously reported that repeated treatment of human periodontal ligament cells and murine pre-osteoblast MC3T3-E1 cells with transforming growth factor-beta 1 (TGF-β1) inhibited their osteoblastic differentiation because of decreased insulin-like growth factor-1 (IGF-1) secretion. We also found that IGF-1/PI3K signaling plays an important role in osteoblast differentiation induced by TGF-β1 treatment; however, the downstream signaling controlling this remains unknown. The aim of this current study is to investigate whether Akt activation is required for osteoblast differentiation. Methodology/Principal Findings: MC3T3-E1 cells were cultured in osteoblast differentiation medium (OBM) with or without 0.1 ng/mL TGF-β1. OBM containing TGF-β1 was changed every 12 h to provide repeated TGF-β1 administration. MC3T3-E1 cells were infected with retroviral vectors expressing constitutively active (CA) or dominant-negative (DN)-Akt. Alkaline phosphatase (ALP) activity and osteoblastic marker mRNA levels were substantially decreased by repeated TGF-β1 treatment compared with a single TGF-β1 treatment. However, expression of CA-Akt restored ALP activity following TGF-β1 treatment. Surprisingly, ALP activity increased following multiple TGF-β1 treatments as the number of administrations of TGF-β1 increased. Activation of Akt significantly enhanced expression of osteocalcin, but TGF-β1 treatment inhibited this. Mineralization of MC3T3-E1 cells was markedly enhanced by CA-Akt expression under all medium conditions. Exogenous IGF-1 restored the down-regulation of osteoblast-related gene expression by repeated TGF-β1 administration. However, in cells expressing DN-Akt, these levels remained inhibited regardless of IGF-1 treatment. These findings indicate that Akt activation is required for the early phase of osteoblast differentiation of MC3T3-E1 cells induced by TGF-β1. However, Akt activation is insufficient to reverse the inhibitory effects of TGF-β1 in the late stages of osteoblast differentiation. Conclusions: TGF-β1 could be an inducer or an inhibitor of osteoblastic differentiation of MC3T3-E1 cells depending on the state of Akt phosphorylation. Our results indicate that Akt is the molecular switch for TGF-β1-induced osteoblastic differentiation of MC3T3-E1 cells.
CITATION STYLE
Suzuki, E., Ochiai-Shino, H., Aoki, H., Onodera, S., Saito, A., Saito, A., & Azuma, T. (2014). Akt activation is required for TGF-β1-induced Osteoblast differentiation of MC3T3-E1 Pre-osteoblasts. PLoS ONE, 9(12). https://doi.org/10.1371/journal.pone.0112566
Mendeley helps you to discover research relevant for your work.