The notion of collapse is discussed and refined within the two-state vector formalism (TSVF). We show how a definite result of a measurement can be fully determined when considering specific forward- and backward-evolving quantum states. Moreover, we show how macroscopic time reversibility is attained, at the level of a single branch of the wavefunction, when several conditions regarding the final state and dynamics are met, a property for which we coin the term “classical robustness under time-reversal”. These entail a renewed perspective on the measurement problem, the Born rule and the many-worlds interpretation.
CITATION STYLE
Aharonov, Y., Cohen, E., Gruss, E., & Landsberger, T. (2014). Measurement and collapse within the two-state vector formalism. Quantum Studies: Mathematics and Foundations, 1(1–2), 133–146. https://doi.org/10.1007/s40509-014-0011-9
Mendeley helps you to discover research relevant for your work.