Computer vision (CV) technologies are assisting the health care industry in many respects, i.e., disease diagnosis. However, as a pivotal procedure before and after surgery, the inventory work of surgical instruments has not been researched with the CV-powered technologies. To reduce the risk and hazard of surgical tools’ loss, we propose a study of systematic surgical instrument classification and introduce a novel attention-based deep neural network called SKA-ResNet which is mainly composed of: (a) A feature extractor with selective kernel attention module to automatically adjust the receptive fields of neurons and enhance the learnt expression and (b) A multi-scale regularizer with KL-divergence as the constraint to exploit the relationships between feature maps. Our method is easily trained end-to-end in only one stage with few additional calculation burdens. Moreover, to facilitate our study, we create a new surgical instrument dataset called SID19 (with 19 kinds of surgical tools consisting of 3800 images) for the first time. Experimental results show the superiority of SKA-ResNet for the classification of surgical tools on SID19 when compared with state-of-the-art models. The classification accuracy of our method reaches up to 97.703%, which is well supportive for the inventory and recognition study of surgical tools. Also, our method can achieve state-of-the-art performance on four challenging fine-grained visual classification datasets.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Hou, Y., Zhang, W., Liu, Q., Ge, H., Meng, J., Zhang, Q., & Wei, X. (2022). Adaptive kernel selection network with attention constraint for surgical instrument classification. Neural Computing and Applications, 34(2), 1577–1591. https://doi.org/10.1007/s00521-021-06368-x