Despite the impression held by some that few biological mysteries remain, even evocative species such as humpback whales (Megaptera novaeangliae), white sharks (Carcharodon carcharias) and green turtles (Chelonia mydas) have poorly documented movement patterns, reproductive strategies and population dynamics despite years of dedicated research. This is largely due to the difficulty of observing wide-ranging marine species over the majority of their life cycle. The advent of powerful tracking devices has certainly improved our understanding, but it is usually only with molecular tools that the nature of population structure becomes apparent. In this issue of Molecular Ecology, Castro and colleagues have provided the first global-scale assessment of population structure for the largest fish - whale sharks (Rhincodon typus). Whale sharks can reach lengths > 12 m and are a popular tourist attraction at places where they aggregate, yet for most of their life cycle, we know little indeed of where they go and how they interact with other populations. Previous tracking studies imply a high dispersal capacity, but only now have Castro and colleagues demonstrated high gene flow and haplotype diversity among the major ocean basins where they are found. © 2007 The Author.
CITATION STYLE
Bradshaw, C. J. A. (2007, December). Swimming in the deep end of the gene pool: Global population structure of an oceanic giant. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2007.03548.x
Mendeley helps you to discover research relevant for your work.