Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption

63Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Mitochondrial encephalomyopathy and lactic acidosis with strokelike episodes (MELAS) is a severe young onset stroke disorder without effective treatment. We have identified a MELAS patient harboring a 13528A→G mitochondrial DNA (mtDNA) mutation in the Complex I ND5 gene. This mutation was homoplasmic in mtDNA from patient muscle and nearly homoplasmic (99.9%) in blood. Fibroblasts from the patient exhibited decreased mitochondrial membrane potential (Δψm) and increased lactate production, consistent with impaired mitochondrial function. Transfer of patient mtDNA to a new nuclear background using transmitochondrial cybrid fusions confirmed the pathogenicity of the 13528A→G mutation; Complex I-linked respiration and Δψm were both significantly reduced in patient mtDNA cybrids compared with controls. Inhibition of the adenine nucleotide translocase or the F1F0-ATPase with bongkrekic acid or oligomycin caused a loss of potential in patient mtDNA cybrid mitochondria, indicating a requirement for glycolytically generated ATP to maintain Δψ m. This was confirmed by inhibition of glycolysis with 2-deoxy-D-glucose, which caused depletion of ATP and mitochondrial depolarization in patient mtDNA cybrids. These data suggest that in response to impaired respiration due to the mtDNA mutation, mitochondria consume ATP to maintain Δψm, representing a potential pathophysiological mechanism in human mitochondrial disease. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

McKenzie, M., Liolitsa, D., Akinshina, N., Campanella, M., Sisodiya, S., Hargreaves, I., … Duchen, M. R. (2007). Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption. Journal of Biological Chemistry, 282(51), 36845–36852. https://doi.org/10.1074/jbc.M704158200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free