The Grover quantum search algorithm is a hallmark application of a quantum computer with a well-known speedup over classical searches of an unsorted database. Here, we report results for a complete three-qubit Grover search algorithm using the scalable quantum computing technology of trapped atomic ions, with better-than-classical performance. Two methods of state marking are used for the oracles: a phase-flip method employed by other experimental demonstrations, and a Boolean method requiring an ancilla qubit that is directly equivalent to the state marking scheme required to perform a classical search. We also report the deterministic implementation of a Toffoli-4 gate, which is used along with Toffoli-3 gates to construct the algorithms; these gates have process fidelities of 70.5% and 89.6%, respectively.
CITATION STYLE
Figgatt, C., Maslov, D., Landsman, K. A., Linke, N. M., Debnath, S., & Monroe, C. (2017). Complete 3-Qubit Grover search on a programmable quantum computer. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01904-7
Mendeley helps you to discover research relevant for your work.