The main aim of this paper is to report two new detections of tidal debris in the northern stream of the Sagittarius dwarf galaxy located at 45 arcdeg and 55 arcdeg from the center of galaxy. Our observational approach is based on deep color-magnitude diagrams, that provides accurate distances, surface brightness and the properties of stellar population of the studied region of this tidal stream. The derived distances for these tidal debris wraps are 45 kpc and 54 kpc respectively.We also confirm these detections with numerical simulations of the Sagittarius dwarf plus the Milky Way. The model reproduces the present position and velocity of the Sagittarius main body and presents a long tidal stream formed by tidal interaction with the Milky Way potential. This model is also in good agreement with the available observations of the Sagittarius tidal stream. We also present a method for estimating the shape of the Milky Way halo potential using numerical simulations. From our simulations we obtain an oblateness of the Milky Way dark halo potential of 0.85, using the current database of distances and radial velocities of the Sagittarius tidal stream. The color-magnitude diagram of the apocenter of Sagittarius shows that this region of the stream shares the complex star formation history observed in the main body of the galaxy. We present the first evidence for a gradient in the stellar population along the stream, possibly correlated with its different pericenter passages. (abridged)
CITATION STYLE
Martinez‐Delgado, D., Gomez‐Flechoso, M. A., Aparicio, A., & Carrera, R. (2004). Tracing Out the Northern Tidal Stream of the Sagittarius Dwarf Spheroidal Galaxy. The Astrophysical Journal, 601(1), 242–259. https://doi.org/10.1086/380298
Mendeley helps you to discover research relevant for your work.