An information-theoretic approach for energy-efficient collaborative tracking in wireless sensor networks

10Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The problem of collaborative tracking of mobile nodes in wireless sensor networks is addressed. By using a novel metric derived from the energy model in LEACH (W.B. Heinzelman, A.P. Chandrakasan and H. Balakrishnan, Energy-Efficient Communication Protocol for Wireless Microsensor Networks, in: Proceedings of the 33rd Hawaii International Conference on System Sciences (HICSS '00), 2000) and aiming at an efficient resource solution, the approach adopts a strategy of combining target tracking with node selection procedures in order to select informative sensors to minimize the energy consumption of the tracking task. We layout a cluster-based architecture to address the limitations in computational power, battery capacity and communication capacities of the sensor devices. The computation of the posterior Cramer-Rao bound (PCRB) based on received signal strength measurements has been considered. To track mobile nodes two particle filters are used: the bootstrap particle filter and the unscented particle filter, both in the centralized and in the distributed manner. Their performances are compared with the theoretical lower bound PCRB. To save energy, a node selection procedure based on greedy algorithms is proposed. The node selection problem is formulated as a cross-layer optimization problem and it is solved using greedy algorithms. Copyright © 2010 Loredana Arienzo.

Cite

CITATION STYLE

APA

Arienzo, L. (2010). An information-theoretic approach for energy-efficient collaborative tracking in wireless sensor networks. Eurasip Journal on Wireless Communications and Networking, 2010. https://doi.org/10.1155/2010/641632

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free