The way people communicate- be it verbally, visually, or via text- is indicative of personality traits. In social media the concept of the status update is used for individuals to communicate to their social networks in an always-on fashion. In doing so individuals utilize various kinds of speech acts that, while primarily communicating their content, also leave traces of their personality dimensions behind. We human-coded a set of Facebook status updates from the myPersonality dataset in terms of speech acts label and then experimented with surface level linguistic features including lexical, syntactic, and simple sentiment detection to automatically label status updates as their appropriate speech act. We apply supervised learning to the dataset and using our features are able to classify with high accuracy two dominant kinds of acts that have been found to occur in social media. At the same time we used the coded data to perform a regression analysis to determine which speech acts are significant of certain personality dimensions. The implications of our work allow for automatic large-scale personality identification through social media status updates. Copyright © 2013, Association for the Advancement of Artificial Intelligence. All rights reserved.
CITATION STYLE
Appling, D. S., Briscoe, E. J., Hayes, H., & Mappus, R. L. (2013). Towards automated personality identification using speech acts. In AAAI Workshop - Technical Report (Vol. WS-13-01, pp. 10–13). AI Access Foundation. https://doi.org/10.1609/icwsm.v7i2.14469
Mendeley helps you to discover research relevant for your work.