Opinions in social media play such an important role for customers and companies that there is a growing tendency to post fake reviews in order to change purchase decisions and opinions. In this paper we propose the use of different features for a low dimension representation of opinions. We evaluate our proposal incorporating the features to a Support Vector Machines classifier and we use an available corpus with reviews of hotels in Chicago. We perform comparisons with previous works and we conclude that using our proposed features it is possible to obtain competitive results with a small amount of features for representing the data. Finally, we also investigate if the use of emotions can help to discriminate between truthful and deceptive opinions as previous works show to happen for deception detection in text in general.
CITATION STYLE
Cagnina, L. C., & Rosso, P. (2015). Classification of deceptive opinions using a low dimensionality representation. In 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA 2015 at the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015 - Proceedings (pp. 58–66). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/w15-2909
Mendeley helps you to discover research relevant for your work.