Epsilon-Caprolactam- and Nylon Oligomer-Degrading Bacterium Brevibacterium epidermidis BS3: Characterization and Potential Use in Bioremediation

2Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

epsilon-Caprolactam (Caprolactam, CAP), a monomer of the synthetic non-degradable polymer nylon-6, is the major wastewater component in the production of caprolactam and nylon-6. Biological treatment of CAP, using microbes could be a potent alternative to the current waste utilization techniques. This work focuses on the characterization and potential use of caprolactam-degrading bacterial strain BS3 isolated from soils polluted by CAP production wastes. The strain was identified as Brevibacterium epidermidis based on the studies of its morphological, physiological, and biochemical properties and 16S rRNA gene sequence analysis. This study is the first to report the ability of Brevibacterium to utilize CAP. Strain BS3 is an alcalo- and halotolerant organism, that grows within a broad range of CAP concentrations, from 0.5 up to 22.0 g/L, optimally at 1.0–2.0 g/L. A caprolactam biodegradation experiment using gas chromatography showed BS3 to degrade 1.0 g/L CAP over 160 h. In contrast to earlier characterized narrow-specific CAP-degrading bacteria, strain BS3 is also capable of utilizing linear nylon oligomers (oligomers of 6-aminohexanoic acid), CAP polymerization by-products, as sole sources of carbon and energy. The broad range of utilized toxic pollutants, the tolerance for high CAP concentrations, as well as the physiological properties of B. epidermidis BS3, determine the prospects of its use for the biological cleanup of CAP and nylon-6 production wastes that contain CAP, 6-aminohexanoic acid, and low molecular weight oligomer fractions.

Cite

CITATION STYLE

APA

Esikova, T. Z., Akatova, E. V., & Solyanikova, I. P. (2023). Epsilon-Caprolactam- and Nylon Oligomer-Degrading Bacterium Brevibacterium epidermidis BS3: Characterization and Potential Use in Bioremediation. Microorganisms, 11(2). https://doi.org/10.3390/microorganisms11020373

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free