Materials innovation calls for an integrated framework combining physics-based modelling and data-driven informatics. A dislocation-based constitutive model accounting for both transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) was built to interpret the mechanical characteristics of metastable titanium alloys. Particular attention was placed on quantitatively understanding the composition-sensitive phase stability and its influence on the underlying deformation mechanism. For this purpose, a pseudoelastic force balance incorporating thermodynamics and micromechanics was applied to calculate the energy landscapes of β → α″ martensitic transformation, {332}〈113〉 twinning and dislocation slip. Extensive material data were probed, computed and fed to the model. Our results revealed that TRIP and TWIP may operate simultaneously because of the presence of a noticeably overlapped energy domain, and confirmed {332}〈113〉 twinning is an energetically favourable deformation mechanism. The model validation further unveiled that the activation of β → α″ transition remarkably enhances the strain-hardening and plasticity, even though the dynamically formed α″ volume fraction is much less than that of deformation twinning. Our work suggests that the synchronised physical metallurgy and data-driven strategy allows to identify the compositional scenarios for developing high-performance engineering alloys.
CITATION STYLE
Zhao, G., Li, X., & Petrinic, N. (2021). Materials information and mechanical response of TRIP/TWIP Ti alloys. Npj Computational Materials, 7(1). https://doi.org/10.1038/s41524-021-00560-2
Mendeley helps you to discover research relevant for your work.