Object-Based Image Retrieval Using the U-Net-Based Neural Network

51Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Day by day, all the research communities have been focusing on digital image retrieval due to more internet and social media uses. In this paper, a U-Net-based neural network is proposed for the segmentation process and Haar DWT and lifting wavelet schemes are used for feature extraction in content-based image retrieval (CBIR). Haar wavelet is preferred as it is easy to understand, very simple to compute, and the fastest. The U-Net-based neural network (CNN) gives more accurate results than the existing methodology because deep learning techniques extract low-level and high-level features from the input image. For the evaluation process, two benchmark datasets are used, and the accuracy of the proposed method is 93.01% and 88.39% on Corel 1K and Corel 5K. U-Net is used for the segmentation purpose, and it reduces the dimension of the feature vector and feature extraction time by 5 seconds compared to the existing methods. According to the performance analysis, the proposed work has proven that U-Net improves image retrieval performance in terms of accuracy, precision, and recall on both the benchmark datasets.

Cite

CITATION STYLE

APA

Kumar, S., Jain, A., Kumar Agarwal, A., Rani, S., & Ghimire, A. (2021). Object-Based Image Retrieval Using the U-Net-Based Neural Network. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/4395646

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free