Prediction of drug-target interactions and drug repositioning via network-based inference

675Citations
Citations of this article
652Readers
Mendeley users who have this article in their library.

Abstract

Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 μM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. © 2012 Cheng et al.

Cite

CITATION STYLE

APA

Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., … Tang, Y. (2012). Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Computational Biology, 8(5). https://doi.org/10.1371/journal.pcbi.1002503

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free