Fibroblast growth factor 19 (FGF19) is the human ortholog of mouse FGF15, and both proteins function as an endocrine signal to regulate various liver functions. FGF15/FGF19 protein contains two disulfide bonds. It is unfavorable to form disulfide bonds in Escherichia coli (E. coli ) cytoplasm because of the bacterial cytoplasmic reducing environment. Modification of the cytoplasmic reducing environment and/or co-expression of protein chaperones are common strategies to express disulfide bond containing proteins in E. coli. In the current study, we report a method to produce soluble FGF15/ FGF19 protein in cytoplasm of E. coli. Several commercial available strains with the disruption of thiol-redox pathways, and/ or co-expression of redoxase or refolding chaperones were used to develop this novel method for expression of FGF15/ FGF19 in E. coli. Mutation of the thiol-disulfide bond reducing pathway in E. coli or N-terminal fusion of thioredox (TRX) alone is not enough to support disulfide bond formation in FGF15/19 proteins. However, TRX fusion protein improved FGF19 solubility in strains of thiol-redox system mutants. In addition, DsbC co-expressed in thiol-redox system mutants alone improved and further enhanced FGF19 solubility with combination of TRX fusion tag. The soluble FGF19 proteins were easily purified through Ni-NTA affinity chromatography and anion exchange chromatography, and the purified protein maintained its biological activities, confirmed by suppressing hepatic Cyp7a1 gene transcription in mice and by activating ERK1/2 signaling pathway in HepG2 cells. In contrast, soluble FGF15 protein in cytoplasm remained very low using these strategies. In summary, we have successfully developed a method to express functional FGF19 protein in prokaryotic cells, and this strategy may be adapted for the expression of other disulfide-containing proteins. © 2014 Kong, Guo.
CITATION STYLE
Kong, B., & Guo, G. L. (2014). Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085890
Mendeley helps you to discover research relevant for your work.