Increasing cell permeability of N-acetylglucosamine via 6-acetylation enhances capacity to suppress T-helper 1 (TH1)/TH17 responses and autoimmunity

19Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

N-acetylglucosamine (GlcNAc) branching of Asn (N)–linked glycans inhibits pro-inflammatory T cell responses and models of autoimmune diseases such as Multiple Sclerosis (MS). Metabolism controls N-glycan branching in T cells by regulating de novo hexosamine pathway biosynthesis of UDP-GlcNAc, the donor substrate for the Golgi branching enzymes. Activated T cells switch metabolism from oxidative phosphorylation to aerobic glycolysis and glutaminolysis. This reduces flux of glucose and glutamine into the hexosamine pathway, thereby inhibiting de novo UDP-GlcNAc synthesis and N-glycan branching. Salvage of GlcNAc into the hexosamine pathway overcomes this metabolic suppression to restore UDP-GlcNAc synthesis and N-glycan branching, thereby promoting anti-inflammatory T regulatory (Treg) over pro-inflammatory T helper (TH) 17 and TH1 differentiation to suppress autoimmunity. However, GlcNAc activity is limited by the lack of a cell surface transporter and requires high doses to enter cells via macropinocytosis. Here we report that GlcNAc-6acetate is a superior pro-drug form of GlcNAc. Acetylation of amino-sugars improves cell membrane permeability, with subsequent de-acetylation by cytoplasmic esterases allowing salvage into the hexosamine pathway. Per- and bi-acetylation of GlcNAc led to toxicity in T cells, whereas mono-acetylation at only the 6 > 3 position raised N-glycan branching greater than GlcNAc without inducing significant toxicity. GlcNAc-6-acetate inhibited T cell activation/proliferation, TH1/TH17 responses and disease progression in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of MS. Thus, GlcNAc-6-Acetate may provide an improved therapeutic approach to raise N-glycan branching, inhibit pro-inflammatory T cell responses and treat autoimmune diseases such as MS.

Cite

CITATION STYLE

APA

Lee, S. U., Li, C. F., Mortales, C. L., Pawling, J., Dennis, J. W., Grigorian, A., & Demetriou, M. (2019). Increasing cell permeability of N-acetylglucosamine via 6-acetylation enhances capacity to suppress T-helper 1 (TH1)/TH17 responses and autoimmunity. PLoS ONE, 14(3). https://doi.org/10.1371/journal.pone.0214253

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free