Multi-stakeholder partnerships (MSPs) have become a widespread means for deploying policies in a whole of society strategy to address the complex problem of childhood obesity. However, decision-making in MSPs is fraught with challenges, as decision-makers are faced with complexity, and have to reconcile disparate conceptualizations of knowledge across multiple sectors with diverse sets of indicators and data. These challenges can be addressed by supporting MSPs with innovative tools for obtaining, organizing and using data to inform decision-making. The purpose of this paper is to describe and analyze the development of a knowledge-based infrastructure to support MSP decision-making processes. The paper emerged from a study to define specifications for a knowledge-based infrastructure to provide decision support for community-level MSPs in the Canadian province of Quebec. As part of the study, a process assessment was conducted to understand the needs of communities as they collect, organize, and analyze data to make decisions about their priorities. The result of this process is a “portrait”, which is an epidemiological profile of health and nutrition in their community. Portraits inform strategic planning and development of interventions, and are used to assess the impact of interventions. Our key findings indicate ambiguities and disagreement among MSP decision-makers regarding causal relationships between actions and outcomes, and the relevant data needed for making decisions. MSP decision-makers expressed a desire for easy-to-use tools that facilitate the collection, organization, synthesis, and analysis of data, to enable decision-making in a timely manner. Findings inform conceptual modeling and ontological analysis to capture the domain knowledge and specify relationships between actions and outcomes. This modeling and analysis provide the foundation for an ontology, encoded using OWL 2 Web Ontology Language. The ontology is developed to provide semantic support for the MSP process, defining objectives, strategies, actions, indicators, and data sources. In the future, software interacting with the ontology can facilitate interactive browsing by decision-makers in the MSP in the form of concepts, instances, relationships, and axioms. Our ontology also facilitates the integration and interpretation of community data, and can help in managing semantic interoperability between different knowledge sources. Future work will focus on defining specifications for the development of a database of indicators and an information system to help decision-makers to view, analyze and organize indicators for their community. This work should improve MSP decision-making in the development of interventions to address childhood obesity.
CITATION STYLE
Addy, N. A., Shaban-Nejad, A., Buckeridge, D. L., & Dubé, L. (2015). An innovative approach to addressing childhood obesity: A knowledge-based infrastructure for supporting multi-stakeholder partnership decision-making in Quebec, Canada. International Journal of Environmental Research and Public Health, 12(2), 1314–1333. https://doi.org/10.3390/ijerph120201314
Mendeley helps you to discover research relevant for your work.